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ABSTRACT 

Diabetic Kidney Disease (DKD) is a major public health problem.  Diabetes is on the rise and is the leading 

cause of end-stage kidney disease in the United States.  Diabetic nephropathy involves glomerular proteinuria. 

Podocytes are ultimately differentiated, specializing in blood cells that are essential for maintaining 

glomerular filtration.  Podocyte deficiency has been identified as a major cause of kidney disease, 

glomerulosclerosis, and loss of kidney function.  This review describes the weakening of podocytes due to 

cell loss and cell death. Many mediators, such as TGF-b and angiotensin-II, have profound effects on diabetic 

nephropathy podocytes and also focus on the role of podocytes in kidney disease. 
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INTRODUCTION  

Diabetic kidney disease  (DKD) is a degenerative disease caused by diabetes and causes more than 40% of 

new end-stage renal disease (ESKD).  It is the leading cause of renal disease in the United States [1].  A 30% 

to 40% of diabetics develop DKD, and most cases associated with type 2 diabetes are the most common type 

of diabetes [2]. Due to the prevalence of T2DM, these patients are the most common cause of DKD and make 

up the majority of diabetics undergoing dialysis [3]. Glycemic control, high blood pressure, smoking, and 

family history increase the risk of nephropathy [4-7]. Diabetes causes a change in kidney function, including 

hyperfiltration, albuminuria, and decreased glomerular filtration rate (GFR). At the hospital, DKD was 

diagnosed with albuminuria in patients with a history of diabetes [8-10].    
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Albuminuria is not only the first symptom of diabetic nephropathy, but it is also associated with an increased 

risk of heart disease and stroke and is the best vision for reducing GFR [11-12]. However, approximately 

30% of patients with DKD do not develop albuminuria [13]. The risk of developing 

DKD is strongly correlated with the duration of diabetes [14]. Historical changes in the glomerulus were 

specific to diabetes and could be used to diagnose DKD.   Primary glomerular changes are associated with the 

thickness of the underlying membrane that accompanies vascular disease and sickle cell disease [15,16]. 

Glomerulosclerosis is associated with central fibrosis, vascular disease, and progressive degeneration in GFR 

[17, 18].   

PODOCYTES  

Podocytes are highly specialized biological organisms that comprise the major cellular pathways and the 

movement of the limbs. Podocytes contain a large number of vesicle membranes, as shown by the multi-

layered vesicles and the perforated holes along with the region of origin of these cells. Podocytes have a high 

potential for protein synthesis and modification after translation due to the enhanced endoplasmic reticulum 

and high Golgi function [19]. The role of podocytes in the pathology of DKD has become prominent after 

careful study by Pagtalunan et al. Podocyte deficiency has been shown to be strongly associated with 

albuminuria and GFR loss in Pima, India, with type 2 diabetes [20]. Since then, several clinical studies have 

confirmed a correlation between podocyte loss, proteinuria, and glomerulosclerosis, and podocyte loss may be 

an important contributing factor to the development of DKD [21-23]. Podocyte integrity is essential for the 

maintenance and operation of a transparent filter wall. It is a major source of GBM Laminin Beta 2 and 

Collagen IV compounds. It initiates the formation of a clear water window containing endothelial cells, 

albumin, and immunoglobulins. It suppresses vascular endothelial growth factor VEGFA, angiopoietin-1, and 

the cells necessary for endothelial cell life. Although differentiated in the end, the cells are very strong, 

interacting with the base membrane of the eyeball and communicating by turning signals from the diaphragm 

gap [24 - 26].   

LOSS OF PODOCYTE 

Foot process effacement results in contraction, enlargement, and deterioration of the function of each 

podocyte. This is not a disease-specific pathological study, but it is not limited to many forms of glomerular 

disease, with or without protein [27]. Live and dead podocytes can be recovered from urine. This indicates 

that the loss of podocytes is the result of segregation and death [28]. Podocytes track GBM via β3β1 integrins 

and dystroglycan (DG) [29]. Recent studies have also shown reduced renal expression and altered renal 

localization in biopsies of patients with type I and type II diabetic nephropathy [30]. This change in nephrine 

expression is enhanced by the elimination of the signaling Ca⁺ kinase protein [31] and the blockage of the 

renin-angiotensin system [32]. In addition, a similar change has been observed in nephrine expression in 

podocytes culture expressing glycated albumin and angiotensin II [33]. In 2006, Susztaketal suggests that 

normal podocytes in high glucose conditions die due to apoptosis. By mechanism, they showed that the 

release of membrane plasma mitochondrial and ROS play an important role in the function of p38 MAPK 
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[34]. Subsequent studies have shown that the plasma filter NADPH oxidase (NOX) is also involved. This 

study found that podocyte apoptosis induces the development of DKD, which in turn leads to podocyte 

degradation, increased urinary albumin secretion, and expansion of the matrix in type I and type II diabetic 

animal models [35,36].  Recent studies have shown that the inflammatory pathway to cell death also 

contributes to the loss of podocytes in diabetes [37].  

GLOMERULOSCLEROSIS 

The onset of glomerulosclerosis is widely reviewed. The first factor that causes the development of 

glomerulosclerosis is the loss of podocytes. Persistent deficiency of other podocytes covering the lesion 

causes the excess protein to develop through the low-density Glomerular Basement Membrane (GBM), 

causing endosubcutaneous hyaline disease of the affected ligament and causing lumps in the Bowman's 

ligament [38]. In 2005, Ichikawa et al. has shown that podocytes not only transmit damage to other 

glomerular cells, but also transmit damage from podocytes to podocytes. Recombinant immunotoxin injection 

using chimeric rats containing NEP25 podocytes that require Pseudomonas immunotoxin or cancer cells that 

do not respond to the immunotoxin caused damage to both NEP25 podocytes and wild-type podocytes. [39]. 

Severe damage to podocytes results in the loss of intercellular networks. VEGF is a common example of this 

concept. Although VEGF is produced by podocytes, it plays an important role in the regulation of endothelial 

cells [40].   

PODOCYTOPENIA 

The number of podocytes decreases in glomeruli in type I diabetics of any age, even in short-term diabetics 

[41]. Podocyte mass usually indicates a correlation between podocyte loss and proliferation. Two major 

factors are involved in the process of podocyte loss, proliferation, and apoptosis, while DNA deterioration and 

hypertension contribute to its proliferation [42]. Previous studies have shown that a3b1 expression decreases 

in patients with diabetic nephropathy and streptozotocin-induced diabetic rats, resulting in the release of local 

GBM podocytes [43,44]. 

 

EFFECT OF VARIOUS MEDIATORS ON PODOCYTE   

Further research designed to identify the mechanisms underlying these end-to end statements provides 

important insights. The importance of this area to the nephrology research team comes from several studies 

conducted in recent years, including discussing the effects of vascular endothelial growth factor  (VEGF) [45], 

mechanical stress [46], NOTCH pathway [47], and TGF-β [48], as shown in Table 1. [49].   
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Table 1. ANP, atrial natriuretic peptide; MAPK, mitogen-activated protein kinase; MMP, matrix 

metalloproteinase; NP, nitroprusside; SD, slit diaphragm; TGF-b, transforming growth factor-b; VEGF, 

vascular endothelial growth factor. 

 

 

 

S.No. Mediators Effects on Podocytes 

1.  High glucose Induction of hypertrophy, 

Increased production of collagen a1(IV), 

a3(IV), and a5(IV), 

Activation of p38 MAPK pathway, Increased 

production of VEGF and angiotensin II,  

Reduced expression of P-cadherin, Reduced 

expression of integrin a3 subunit, 

Increased C-type NP-induced production of 

cGMP, 

 Enhancement of mechanical stress-induced 

glucose uptake 

2.  TGF-b Modulation of CTGF expression, Increased 

production of collagen a3(IV), 

 Involvement of Ang II-mediated collagen 

a3(IV) production, 

 Decreased production of collagen a1(IV) and 

a5(IV), 

 Increased activities of MMP-2 and -9, 

Enhanced secretion of cystatin C, Induction of 

apoptosis, 

 Increased production of VEGF 

3.  Mechanical stress Increased glucose uptake, 

 Induction of hypertrophy, 

 Reduced proliferation, 

 Activation of the intracellular renin-

angiotensin system, 

 Increased osteopontin expression, Induction of 

reversible reorganization of the actin 

cytoskeleton 

4.  Angiotensin II Induction of hypertrophy, 

 Increased production of collagen a3(IV), 

 Modulation of the expression of SD complex 

and induction of proteinuria, Induction of 

apoptosis, 

 Increased excretion of podocytes in urine, 

 Increased intracellular calcium activity and 

induction of depolarization, 

 Release of various growth factors (7) 
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PATHOLOGY OF PODOCYTES:   

Chronic renal disease assumes a predictable pattern of development. There is a constant loss of renal activity, 

marked by a decrease in the glomerular filtration rate, regardless of the type of underlying disease. 

Progressive nephron deficiency induces this deterioration in renal activity. The absence of nephrons fits a 

pattern of degeneration known as focal segmental glomerulosclerosis, and is consistent with tubular 

degeneration and interstitial fibrosis when observed histologically. So far, no commonly accepted explanation 

has been proposed to describe this stereotyped degenerative method. The degeneration phase in a variety of 

animal models, including subtotal renal ablation [50-51], desoxycorticosterone-trimethylacetate (DOCA)-

hypertension [52], chronic Masugi nephritis [53], experimental membranous nephropathy [54], in the Milan 

normotensive rat [55], in the fawn-hooded rat [56], and after long-term mitogenic stimulation of the 

glomerulus by exogenous fibroblast growth factor [57].  

FUNCTION OF PODOCYTES IN DIABETIC NEPHROPATHY   

Therefore, the main function of podocytes, along with GBM and endothelium, is to be involved in the 

formation of filter barriers and the regulation of overall filtration. Podocytes also support bipolar disorder and 

bipolar disorder that participate in GBM mutations, and are involved in the overall immune response. DN 

growth is manifested by virus collection, virus growth, and GBM damage. Following these changes, the small 

intestine, interstitium, and arterioles change. Recent changes include elevated glomerular pressure and 

interstitial fibrosis [58]. Type 1 diabetes has been shown to reduce the amount of visceral epithelial 

glomerular tissue, even after a short period of illness [59]. In the biological study by Dalla Vestra et al. among 

patients with type 2 diabetes, they determined that a decrease in podocyte deficiency was more likely than 

albuminuria than a decrease in total podocyte count [60]. Mature podocytes have proliferative limits. Bacterial 

growth occurs when up to 20% of podocytes are lost and GBM is depleted when a further loss occurs, 

resulting in increased glomerular fibrosis and proteinuria [61-62]. Podocytes are excreted in the urine of 

patients with glomerulopathy, and podocyte size corresponds to disease function [63, 64]. 

TARGETING PODOCYTES AS RENAL SPECIFIC THERAPY: 

Medical nephrologists and renal researchers should work to define the renal defense system and establish 

therapeutic plans for the kidney or the different renal compartments that make up the kidney. Podocytes are 

probably the most possible candidate cell population to be studied on a molecular basis since they are the 

most delicate component of the glomerular filtration network even during early stages of injury and serve as 

hallmarks of a condition of glomerular disease [65]. 

Podocytes have a small ability for cell division and do not regenerate in response to damage or destruction 

due to their post-mitotic disposition [66]. If left untreated, glomerular diseases will progress quickly. 

Podocytes, regardless of their source, are essential determinants of outcome for all glomerular diseases, 

making podocytes a specific paradigm for monitoring and studying disease progression [67]. As a result, in 

the last decade, there has been a significant change toward podocyte proteins as therapeutic targets [68]. Sialic 

acid and its precursors are effective in the treatment of MCD32 and diabetic nephropathy [69]. 
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In FSGS and diabetic nephropathy, mutated variants of human ANGPTL4 reduce proteinuria without 

inducing hypertriglyceridemia [70]. By specifically attacking the upregulated integrin αvβ3 on podocytes, a 

particular inhibitor of integrin αvβ3, cyclo-RGDfV, alleviates proteinuria in mouse models of nephrotic 

syndrome [71].  Rituximab, a CD20 antibody, attaches to sphingomyelin phosphodiesterase acid-like 3b 

(SMPDL-3b) and stabilizes the structure and function of podocytes treated with repeated FSGS sera [72]. 

CONCLUSION:  Numerous factors considered to be mediators in the pathogenesis of diabetic nephropathy 

are known to induce podocyte injury, resulting in proteinuria and some characteristic pathologic changes, 

such as glomerular hypertrophy, podocytopenia, glomerulosclerosis, and foot process effacement. Various 

functions of podocytes are also involved in the formation of filters.    
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